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Abstract 

A new series solution for the constant heating rate Arrhenius integral is the basis of a method for determining the kinetic 
parameters of a single-step reaction from temperature scanning experiments, lsoconversion formulas are derived for 
calculating the Arrhenius activation energy and frequency factor of a reaction independent of the form of the rate law. 
Thermogravimetry data for pyrolysis of low density polyethylene and differential scanning calorimetry data for the 
phenylethynyl curing reaction were analyzed and activation energies were determined and found to agree with literature 
values. In contrast to existing integral methods, frequency factors for the pyrolysis and curing reaction were obtainable using 
the present approach without any assumptions about the reaction order or the form of the conversion function. ~ 1997 
Elsevier Science B.V. 
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1. I n t r o d u c t i o n  analysis equipment and are useful for calculating 
preconversion during the heat-up period in isothermal 

Many technological ly important processes and experiments [11], for testing reaction models over a 
reactions occur under nonisothermal conditions and broad temperature and conversion range [13], etc. 
it is often desired to calculate or predict the progress of  Despite their utility integral methods have suffered 
the reaction over t ime during transient heating. Inte- from low sensitivity, a dependence on the form of  the 
gral methods of  nonisothermal analysis utilize cumu- rate law, an assumption that the reaction mechanism 
lative values of a species concentration, heat of does not change with temperature, and the somewhat 
reaction, weight loss, etc., measured in temperature cumbersome mathematics of the series approxima- 
scanning experiments to extract the kinetic parameters tions for the Arrhenius integral required in the ana- 
of a reacting system and determine a suitable rate law lyses [3,11 ]. An exact solution of the Arrhenius 
[1-13]. These powerful methods derive from the pro- integral is possible only for nonlinear temperature 
grammable  heating rate capabil i ty of  modern thermal programs [3], but this capabili ty is beyond most 

commercial  instruments, 
Since the overwhelming majority of  thermal aria- 
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approximation for the Arrhenius integral under experi- separation of variables in Eq. (2) gives 
mental conditions of a linear temperature program and ~ t t 

r j extend these results to the unambiguous determination F( a ) =- j f ( a,) k d{ = Ae-E'/RT dt t 
of Arrhenius kinetic parameters. It is hoped that the 
results of this work will aid process development of ~0 0 0 
new fire-resistant thermoset resins and advance the (3) 
study of polymer flammability by allowing more where primed symbols denote variables of integration. 
accurate calculation of the gasification rate in the At constant temperature, F ( a ) =  kt, which is the basis 
pyrolysis zone of burning polymers [14]. Since the for isothermal kinetic analyses [1,3,11,13,17], A vari- 
rate-limiting step in isothermal polymer pyrolysis is ety off la)  have been assumed or derived for individual 
the breaking of primary chemical bonds in the mole- cases [ 1,4,5,13,17] such that a linear F(a) vs. time plot 
cule [15], a direct method for determining pyrolysis is obtained at a particular temperature having slope 
rate constants will facilitate the decoupling of diffu- k(T). The Arrhenius parameters A and Ea for the 
sion and chemical kinetics during burning and help reaction are determined from a number of constant 
relate polymer structure to flammability, temperature experiments by plotting the natural loga- 

rithm of k(T) vs. 1/Tover the temperature domain of 
interest. 

2. Background The isothermal procedure based on Eq. (2) requires 
a priori knowledge of F(c~) and the measured kinetic 

Rate laws of the type parameters are valid only for the temperature range 
examined. Usually f(c0 and, therefore, F(ce), are not 

~ t  = f ( a  ' known prior to the experiment so various methods T) (1) 
have been proposed to allow determination of Ea and 

are the basis for almost all of the kinetic methods used flc~) separately or in combination from a series of 
in differential thermal analysis and differential scan- temperature-scanning experiments at different con- 
ning calorimetry [1-13,16]. In Eq. (1), Tis the abso- stant heating rates [I-3,6-13]. For a constant heating 
lute temperature and rate, dT/dt  =/3, Eq. (3) can be written as follows: 

c( t )  - c(o)  T 
A f -Ea/Rr' , c~ -- C(cx~) - C(0) F(c~) = /3  e dT (4) 

r0 
is a fractional conversion in terms of the instanta- 

where the sample temperature is uniform but changes neous, C(t), initial, C(0) and final, C(cx~), values of a 
measurable reaction parameter such as a species con- linearly from To to T over the time interval (0,t). 
centration, heat of reaction, pyrolyzed mass, etc. Application of nonisothermal or integral methods to 
Eq. (1) is written such that a increases with time, t. experimental data requires evaluating the exponential 
The temperature dependence of f(c~,T) is usually temperature (Arrhenius) integral on the right-hand 
assumed to reside exclusively in a rate constant, k, side of Eq. (4). Unfortunately, the Arrhenius integral 
which has the Arrhenius form has no exact solution, hence numerical or approximate 

solutions are required. 
k = A exp ( -Ea /RT)  Series solutions for the Arrhenius integral can be 

where A is the pre-exponential or frequency factor, E~ expressed as a polynomial, p(x), where, x ---- -Ea/RT,  
the activation energy for the reaction, and R the so that Eq. (4)takes the form 
universal gas constant. These assumptions lead to x x 
the generalized reaction rate law F(t~) -~ AEa f e~_dx , aEa , I = - y ~ p ( x  ) (5) 

/3R I x ' 2  
dc~ xo xo 
dt kf(a) (2) 

Several of these series solutions have been derived, 
If k is independent of c~ and f (a)  is independent of T, and Flynn and Wall provide an excellent review [3]. 
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Typical of the series solutions for the Arrhenius AEa { [~d e x, . ix  ) + 2  X'2( Xte~dx'- 2) 2 } 
integral is an asymptotic expansion of the exponential F(c~) = ~ -  (x 7-- 2) x,, - - -  
integral after a single integration-by-parts [18], i.e . . . .  ,, 

e x [ 2! 3 w 41 1 (10) 

p(x) = ~- L1 + x + ~ + ~ ' " ]  (6) Repeated integration-by-parts transforms the right- 
hand side of Eq. (10) to and Schiomilch's expansion [191 

( AEa e~/ ( 2 
e x 1 2 F(a)  - ~--~x,(x7-2) l + x , ( x  ' 2) 

p(X)--x(x-_l)  1 2 - ~  + (2 - x) (3 - x) 
4 ] 8 , 

- ( 2 - x ) ( 3 - x ) ( 4 - x )  ~-...j (7) +x,(x, 2) z ÷O(x 4) 

A property of these integral expansions is that the + O(x '-s) + . . .  ] ~ (11) 
difference between the true value of the function and ~,, 
the sum of a finite number of terms in the series is which contains a new series solution for the Arrhenius 
essentially of the order of magnitude of the last term integral as follows: 
retained. This requires that either - x  > 30, or that a 

_ e x [ 2 8 
few terms be retained in the series expansions for p(x) x(x - 2) L1 -~ x(x - 2) /- x(x 2) 2 
- x  < 10, to achieve an accuracy greater than 95%. An 
empirical equation for p(x) was proposed by Doyle ] 
[6], + O(x-4) + O(x-5) + " '  (12) 

3 

p(x) = 7.03 x 10-3e ~8(x) (8) The first term of Eq. (12), p(x) = e~/(x(x - 2)), is 

where B(x) ranges from 1.195 to 1.034 over the identical to the first two terms of the Schlomilch 
domain, - 6 0  < x < - !  0. An average value, expansion (Eq. (7)). 
B(x) = 1.052, is often used in integral methods of For the normal temperature ranges and activation 
thermal analysis [2,3,6,8,11, ! 3]. energies of scanning thermal analysis the lower limit 

in Eq. (11) can be neglected since, -x0 >> -x.  More- 
over, since - x  >_ 10 (typically), only the first term of 

3. A r r h e n i u s  in tegra l  a p p r o x i m a t i o n  Eq. (11) need be retained 

AEa e x A R T 2  ~ Ea/RT 

The intractability of multiterm series approxima- F(c~) ~ ~R x(x - 2) - [3(Ea + 2RT) e 
tions, required for accurate evaluation of the Arrhe- (13) 
nius integral, has limited the utility of integral methods 
for quantitative kinetic analysis. The following deri- By way of" comparison, Doyle's approximation 
vation leads to a simple, semi-analytic result which (Eq. (8)) leads to the single-term result 
provides better accuracy than any previous single- AEa 
term approximation of the constant heating-rate F(c~) ~7 .03  x 10 3 ~e-1 '052E"/RT (14) 
Arrhenius temperature integral. 

Let us begin by defining a new variable, y = eX/x 2, while the first term of the asymptotic expansion 
so that Eq. (4) becomes (Eq. (7)) gives 

~ /  AEaeX ART2e E"/m Y F(cQ -~ -- (15) 
F(o~) = f(y')dy' (9) /3R x 2 /~E a 

y0 Eq. (13) differs from Eq. (15) by the factor 2RTin the 
with, f(y) = x/(x - 2). A single integration-by-parts denominator. Because of their simplicity, Eqs. (14) 
gives 



1 2 0  R.E. Lyon/Thermochimica Acta 297 (1997) 117-124 

2 0  . . , . . . t . . . . . .  : . . . I . . . J . . . J .  . . =  . . ,  

15 Expansion ~ ~ 0.0 -" ~ 3oo 

LU - - 1 . 0  • 1 5 0  

0 ~ 2 : :  . . . . .  ~ . . . . .  .z loo 

~ " . . . . . . . . . . . . . . . . . . . .  - -  - ~ -2 .0  . 

- 1  A p p r o x i m a t i o n ~  ~ ' ,  . ! .  L ~  
- , o  (E,::,oa,,o,', ,41 4 0  / \ 50 
- 2 0 ~ .  . . , . • • r • • • , • • - a - -  • , - 4 . 0  . , . . . . . . .  , • • • , . . . . . . .  , • . .  

- 1 O 0  - 8 0  - 6 0  - 4 0  - 2 0  0 4 0 0  6 0 0  8 0 0  1 0 0 0  1 2 0 0  1 4 0 0  1 6 0 0  

x T e m p e r a t u r e / K  

Fig. 1. Percent relative error vs. x = -Ea/RT for Eqs. (13) - (15)as  Fig. 2. Percent relative error vs. temperature for Eq. (13) with 
approximations for the Arrhenius integral.</fig Ea : 50, 100, 150, 200, and 300 kJ mol - ] .  

4. Kinetic parameters from constant heating-rate 
and (15) are commonly used in integral methods of experiments 
thermal analysis [1-3,6-8,11-13]. 

The relative percent error associated with the use of The determination of both A and Ea from isothermal 
Doyle's approximation (Eq. (14)) and the single-term or nonisothermal experiments requires a priori knowl- 
asymptotic expansion (Eq. (15)) as solutions of the edge off lc0 or F(c0. A common functional form for 
Arrhenius integral for a physically realistic domain of rico is an arbitrary (nth) order reaction [ 1,3-13,17,18] 
x are plotted in Fig. 1 along with the error for the which allows an analytic solution for F(c0 and pro- 
present result, Eq. (13). The 'exact' value of the vides an additional fitting parameter - the reaction 
Arrhenius integral used for the error calculation was order, n. However, while A and Ea have physical 
obtained by double precision numerical integration of significance [14] their numerical values and the reac- 
Eq. (4) using the trapezoidal rule with a step size of tion order determined from three-parameter fits of nth- 
0.5 K between the limits of To = 300 K and T. Fig. 1 order kinetics to conversion data is questionable 
shows that Eq. (13) is significantly more accurate than except in the case of a well-defined reaction mechan- 
either of the single-term approximations, Eq. (14) or ism [3]. To circumvent the need to assume nth-order 
Eq. (15), as a solution of the Arrhenius integral, reaction kinetics to extract kinetic parameters, iso- 
Eq. (13) under-predicts the true value of the Arrhenius conversion methods [2,8,11] have been developed 
integral by less than 1% over the domain - x  _> 10 which utilize temperature and heating rate data at a 
normally encountered in experimental studies. Corn- fixed value of a and, thus, presumably, a fixed value of 
parable accuracy requires at least three terms of the F(c0. This eliminates the need to assume a functional 
asymptotic expansion or the first two terms of the form for F(a)  to determine the activation energy of 
Schlomilch expansion [20]. the reaction but precludes simultaneous determina- 

Fig. 2 is a plot of the percent relative error vs. tion of the frequency factor. Typical of the isoconver- 
temperature using Eq. (13) to approximate the Arrhe- sion methods is an iterative technique for determining 
nius integral for a range of activation energies. An Ea directly from conversion vs. temperature data at 
accuracy of greater than 99% is obtained for different heating rates proposed by Wall [2]. The 
Ea >_ 100 kJ/mol over the temperature range nor- method is based on Doyle's approximation of the 
mally examined in scanning thermal analyses. The Arrhenius integral (Eq. (14)) which can be differen- 
positive catastrophe in Fig. 2 at low temperatures is tiated to give 
the result of neglecting the lower limit of integration in d lnfl Ea 
arriving at Eq. (13), which becomes significant as T ] ,~ ~n~x~ 
approaches To d T(~---7 
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where T(c~) is the temperature corresponding to a integral F(c~) = 1 at c~ =1 (c.f., Refs. [3,17]), then 
specific degree of conversion at a particular heating ln[F(c~)] = 0 at completion of the reaction and 
rate. The method requires successive approximations Eq. (13) becomes for T(c~ = 1) _~ T(1) 
of Ea as the empirical coefficient B(x)is incremented [T~I)] 
for each new value Of Ea/RT(cO. The activation energy In IF(l)] _= 0 = In [a] - In [;3] - In 
thus determined is independent of F(c0 to the extent 

['2 Ea ] Ea that the assumptions used to obtain Eqs. (1)-(4) are - I n  | + =~vTv,.,[ (20) 
valid but the method is time consuming without L RI~I)j  RT(1) 

computerized data analysis and is empirically based from which 
I1,31. 

An analogous but more direct method for determin- ln [  ;T~I)] =ln[A] 
ing Ea from constant heating-rate experiments without 
any assumptions about the form offlct) or it's integral { ER~I) } 
F(c0 follows from Eq. (13). Taking the natural loga- - ln[2 + Ea/RT(I)] + 
rithms of Eq. (13) (21) 

1 
In [F(c~)] = lnA - In/3 - In T ~  - in (2 - x) + x The frequency factor can be calculated by direct 

substitution of Ea and /3, T(1) data pairs into 
(16) Eq. (21) after some rearrangement. 

where x = x(cQ = -Ea/RT(c~). If F(c0 and A are ~{Ea + 2RT(1)} eEa/RT(I I 
independent of temperature and /3 is treated as a A = . (22) 
continuous variable, Eq. (16) can be 'differentiated' RT(1)2 
with respect to the reciprocal isoconversion tempera- Alternatively, E, may be used as a fitting parameter 
ture, 1/T(c0, in Eq. (21) to obtain unit negative slope in a plot of 

I 2 ] ln[/3/T(1)] vs. {In[Z+Ea/RT(1)]+Ea/RT(I)} ,  
d In/3 _ T(c~) 2 - x - (17) yielding In [AI as the intercept. The unit slope method d( l /T(~))  

allows simultaneous determination of both the global 
The 2/(2 - x) term on the right-hand side of Eq. (17) activation energy and frequency factor of an arbitrary 
can be neglected since it accounts for less than two single-step reaction from a few temperature scanning 
percent of the bracketed quantity for - x  >_ i 0. The experiments without any assumptions about the reac- 
slope of a plot of heating rate vs. the reciprocal tion order or the functional form of flex). 
temperature at any fixed conversion is therefore From the definition of the Arrhenius rate constant 

dln/3 [ ~  ] and Eq. (22) it follows that 

d(l/T(c~)) - + 2T(c~) (18) 
k[T(l)] - A  exp[-Ea/RT(l )] = ~{Ea -~- 2 e T ( l )  } 

RT(1) 2 
from which the activation energy at a particular con- 
version is (23) 

The reaction rate constant at temperature T(1) is 
[ din/3 +- 2T(c~)l (19) directly calculable from Ea and the/3, T(1) data pairs 

Ea(CQ = - R  Ldl/T(c~) obtained in temperature scanning experiments. 

If the activation energy of the reaction is known 
(e.g., from Eq. (19)) and/3, T(~) data are available, 5. Experimental 
then Eq. (16) is a single equation with two unknowns, 
A and F(c~). Determination of a unique value for 5.1. Polyethylene pyrolysis 
the frequency factor, A, from Eq. (16) therefore 
requires a numerical value for F(c0. If F(c~) satisfies Table 1 is a compilation of fractional mass-loss 
the usual condition for the normalized conversion temperatures T(c0 obtained in our laboratory for 
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Table 1 
Heating rate and fractional mass loss temperatures for pyrolysis of low-density polyethylene 

Heating rate,/3 T(0.01 ) T(0.02) T(0.05) T(0.10) T(0.20) T(0.50) T(1.0) 
K min I K K K K K K K 

5 639 655 680 695 711 726 762 
10 658 678 699 715 730 749 779 
20 673 691 712 726 740 761 792 
40 689 706 727 741 756 776 808 
60 699 713 734 749 764 784 82 I 
80 709 723 744 758 773 793 833 

0 .5  . . . .  ' . . . .  ' . . . .  ' . . . .  ' . . . . . . . . .  ' . . . .  ' . . . .  2 1 0  . . . . . . . .  ' . . . . . . . .  

o.o ~ 20019o 
7,,, -o.5. , -  18o 

o 

- 1 . 0 "  "3 170  
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103 K/'T O~ 

Fig. 3. Plot of natural logarithm of heating rate vs. the reciprocal Fig. 4. Activation energy vs. fractional weight loss for low-de,qsity 
temperature for volatile fractions, a = 0.01, 0.02, 0.05, 0.10, 0.20, polyethylene calculated from Eq. (19). 

0.50, and 1.0 for low molecular weight, low-density polyethylene. 

anaerobic pyrolysis of  (3-5) mg samples of  low-den- The variation in activation energy with weight loss 
sity polyethylene (Mw ~ 35000 g mo1-1, observed in Fig. 4 for low molecular weight, low- 
Mw/M, = 4.5, p ---- 906 kg m -3, Aldrich Chemical) density polyethylene suggests the possibility of  con- 
under nitrogen flowing at 0.10 1 min-  ~ in a thermo- secutive thermal degradation reactions or a single-step 
gravimetric analyzer (Perkin-Elmer TGA-7) at con- reaction with a distribution of activation energies over 
stant heating rates /3 = 5, 10, 20, 40, 60, and 80 the conversion domain. Alternatively, F ( a ) o r  A may 
K min-  1. Fig. 3 is a composite of  the data in Table 1 be temperature dependent so that their derivatives with 
plotted as In [/3] vs. 1/T(c~) for volatile fractions respect to lIT are non-zero as was assumed in deriv- 
a --- 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, and 1.00. High ing Eq. (19). The relatively constant value, 
correlation coefficients (r 2 > 0.98) were obtained for Ea ~ 200 kJ mol-I ,  for conversions above about 
all of  the linear regression curves of  In [/3] vs. 1/T(c~) twenty percent in Fig. 4 is within the range of litera- 
and the slopes at each conversion were used in ture values, Ea = 1 9 2 -  263 kJ mol ] reported for 
Eq. (19) to calculate the activation energies plotted this polymer under these experimental conditions 
in Fig. 4 vs. fractional conversion. Individual values [21]. 
for the activation energy at each conversion, calcu- Fig. 5 is a plot of  the data in Table 1 according to 
lated by Eq. (19), were within ±0.2% of the mean Eq. (21) for the low-density polyethylene of this 
value plotted in Fig. 4, indicating that Ea determined study. Unit negative slope in Fig. 5 was obtained 
by this method is effectively independent of  heating for Ea = 200 kJ mol - l  in agreement with the method 
rate. of  Eq. (19) and Fig. 4. The correlation coefficient for 
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- 6 . o ~ ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  an average activation energy for the phenylethynyl 
-6.5-] °~",,~ " curing reaction, Ea = 139.0 :i- 3.3 kJ mol '. How- 
-7.0 t_~ ~ \ _  ever, for this activation energy and temperature range 

] P %  x=-E~/RT~-(139kJmol-1)/(8.314Jmol n K-n) 
~ -7.5] ] " N ~  ( 8 0 0 K ) =  -21and the more accurate empirical con- 
,=.~ -8.0 stant B(x):--1.098 [2] should have been used in 
~ 1 - 8 ' 5  s,ope=-, ~ Eq.(14) in place of the average B(x) = l.052. This 

single iteration of B(x), according to Wall [2], 
-9.0-~ ~ improves the activation energy estimate for the phe- 
951 , , , , , , " nylethynyl curing reaction to E~, --- 133.2z~ 

32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 3.2 kJ tool  ~ which agrees well with studies by other 

In[2+EdRT]+ EdRT investigators who had found Ea - 132.3 and 
152.8 kJ tool i for the curing reaction of phenylethy- Fig. 5. Plot of In [/3/T] vs. {ln [2 + Ea/RT] + E~/RT} for thermal 

degradation of low-density polyethylene at complete conversion nyl-terminated model compounds 125]. Attempts by 
according to Eq. (21) with E~ - 200 kJ tool 1. Hinkley to determine a single frequency factor for the 

phenylethynyl curing reaction were unsuccessful due 
to the presence of both F(~) and A in Eq. (14). 
Hinkley assumed nth order kinetics with n = 3/2 

the linear regression curve was r 2 = 0.99. The inter- and used the /3-independent conversion value 
cept of the linear plot in Fig. 5 is, 26.039 = In [,4] from c~ ~ 0.48 at the peak reaction-rate temperature to 
which A = 2.0 x l0 I1 s -1, a typical value for the obtain a numerical value for F(~ = 0.48). Substitut- 
frequency factor or pre-exponential term in polymer ing F(0.48) into Eq. (14) resulted in a range of fre- 
thermal degradation [13]. quency factors, A -- 10 s to 10 '~s ~ for the 

phenylethynyl curing reaction. 
Phenylethynyl curing data at complete conversion, 

5.2. Phenylethynyl curing reaction not published in the original work, were kindly pro- 
vided by Hinkley [23] and are given in Table 2. 

The present integral method of nonisothermal Analysis of these data using Eq. (19) with the best- 
kinetic analysis was also applied to differential scan- fit slope of the linear regression of In [/~1 vs. I /T ( I )  
ning calorimetry data for the curing reaction exotherm gives an average E a = 132.8 ~- 0.6 kJ tool I. Substi- 
of phenylethynyl-terminated imide oligomers tuting E~ = 132.8 kJ m o l i  into Eq. (22) gives 
obtained by Hinkley [22,23]. These phenylethynyl A = 9.8 zk 0.8 z 106 s ~ for the five data pairs. By 
curing experiments were conducted on ~7  mg comparison, the unit negative slope method at total 
samples of the oligomer in a differential scanning conversion (Eq. (21)) plotted in Fig. 6 gives 
calorimeter (Shimadzu DSC-50) at heating rates of Ea = 133.4 kJ mo l  i and A = 10.7 x 106 s ~ with a 
5, 20, 40, 60, and 80 K m i n  ~. Samples of fine powder correlation coefficient r 2 .... 0.992. These activation 
were contained in open platinum pans purged with energies for the phenylethynyl curing reaction 
nitrogen at a flow rate of 0.031min -1 during the determined from Eqs. (19) and (21) are self- 
temperature scanning experiments. Fractional conver- consistent and in quantitative agreement with the 
sion, ~, was calculated as the cumulative heat of published values, while the frequency factors lbr 
reaction up to a particular temperature in the scanning this reaction determined from Eqs. (21) and (22) 
experiments divided by the total heat of reaction at the 
incipient temperature of complete reaction according 
to standard methods [24]. Linear baselines were Table2 
assumed. Heating rate and incipient completion temperatures for pheny- 

lethynyl curing reaction [23] 
Hinkley's analysis of these data using Wall's [2] iso- 

conversion method and Doyle's integral approxima- ;~/(Kmin ~ 5 20 4(1 60 80 
tion (Eq. (14)) for c~ = 0.10, 0.30, 0.50, 0.90, yielded T(,~ = I)/K 726 778 795 810 821 
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